skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tonetta, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract is a recently-proposed SAT-based liveness model checking algorithm that showed remarkable performance compared to other state-of-the-art approaches, both in absolute terms (solving more problems overall than other engines on standard benchmark sets) as well as in relative terms (solving several problems that none of the other engines could solve). proves or disproves properties of the formFGq, by trying to show that$$\lnot q$$ ¬ q can be visited only a finite number of times via an incremental reduction to a sequence of reachability queries. A key factor in the good performance of is the extraction of “shoals” from the inductive invariants of the reachability queries to block states that can reach$$\lnot q$$ ¬ q a bounded number of times. In this paper, we generalize to handle infinite-state systems, using the Verification Modulo Theories paradigm. In contrast to the finite-state case, liveness cannot be simply reduced to finding a bound on the number of occurrences of$$\lnot q$$ ¬ q on paths. We propose therefore a solution leveraging predicate abstraction and termination techniques based on well-founded relations. In particular, we show how we can extract shoals that take into account the well-founded relations. We implemented the technique on top of the open source VMT engine IC3ia and we experimentally demonstrate how the new extension maintains the performance advantages (both absolute and relative) of the original , thus significantly contributing to advancing the state of the art of infinite-state liveness verification. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026